(Aα)2=AαAα[cosαsinα−sinαcosα]
[cos2α−sin2α2sinαcosα−2sinαcosα−sin2α+cos2α]
[cos2αsin2α−sin2αcos2α]
Similarly, (Aα)3=(Aα)2Aα
[cos2αsin2α−sin2αcos2α][cosαsinα−sinαcosα]
[cos(2α+α)sin(2α+α)−sin(2α+α)cos(2α+α)]
[cos3αsin3α−sin3αcos3α]
In the light above let us assume that
(Aα)n=[cosnαsinnα−sinnαcosnα]
(Aα)n+1=(Aα)nAα
=[cosnαsinnα−sinnαcosnα] [cosαsinα−sinαcosα]
= [cos(n+1)αsin(n+1)α−sin(n+1)αcos(n+1)α]
Thus we observe that our assumption for (Aα)n is true for n = 2,3..and hence it is true universally .