wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Aα=[cosnαsinnαsinnαcosnα], then prove the following
(Aα)n=[cosnαsinnαsinnαcosnα]

Open in App
Solution

(Aα)2=AαAα[cosαsinαsinαcosα]
[cos2αsin2α2sinαcosα2sinαcosαsin2α+cos2α]
[cos2αsin2αsin2αcos2α]
Similarly,
(Aα)3=(Aα)2Aα
[cos2αsin2αsin2αcos2α][cosαsinαsinαcosα]
[cos(2α+α)sin(2α+α)sin(2α+α)cos(2α+α)]
[cos3αsin3αsin3αcos3α]
In the light above let us assume that
(Aα)n=[cosnαsinnαsinnαcosnα]
(Aα)n+1=(Aα)nAα
=[cosnαsinnαsinnαcosnα]
[cosαsinαsinαcosα]
= [cos(n+1)αsin(n+1)αsin(n+1)αcos(n+1)α]
Thus we observe that our assumption for (Aα)n is true for n = 2,3..and hence it is true universally .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon