If A (α,β)=⎡⎢⎣cos αsinα0−sin αcos α000eβ⎤⎥⎦,then
A(α,β)′=A(−α,β)
A(α,β)−1=A(−α,−β)
adjoint (A(α,β))=e−βA(−α,−β)
We have A(α,β)′=⎡⎢⎣cos α−sin α0sin αcos α000eβ⎤⎥⎦,then=⎡⎢⎣cos (−α)sin(− α)0−sin (−α)cos(− α)000eβ⎤⎥⎦=A(−α,β)Also,A(α,β)A(−α,−β)=⎡⎢⎣cos αsin α0−sin αcos α000eβ⎤⎥⎦⎡⎢⎣cos α−sin α0sin αcos α000e−β⎤⎥⎦=I⇒A(α,β)−1=A(−α,−β)
Next, adjoint A(α,β)=|A(α,β)|A(α,β)−1
=eβA(−α,−β)