If A(α)=cosαsinα-sinαcosα, Then the matrix A2(α)=
A(2α)
A(α)
A(3α)
A(4α)
Finding the value given matrix:
Given, A(α)=cosαsinα-sinαcosα
Now,
A2(α)=cosαsinα-sinαcosα×cosαsinα-sinαcosαA2(α)=cos2α-sin2α2cosαsinα-2cosαsinαcos2α-sin2αA2(α)=cos2αsin2α-sin2αcos2αA2(α)=A(2α)
Hence, option (A) is correct.