Question 8
If A and B are (–2, –2) and (2, –4) respectively, find the coordinates of P such that AP=37AB and P lies on the line segment AB.
The coordinates of point A and B are (-2,-2) and (2,-4) respectively.
Since AP=37AB
Therefore, AP:PB = 3:4
Point P divides the line segment AB in the ratio 3:4.
Coordinates of P=(3×2+4×(−2)3+4,3×(−4)+4×(−2)3+4)
=(6−87,−12−87)
=(−27,−207)