If A and B are (−2,−2) and (2,−4) respectively, find the coordinates of P such that AP=37AB and P lies on the line segment AB.
Using the section formula, if a point (x,y) divides the line joining the
points (x1,y1) and (x2,y2) in the
ratio m:n, then (x,y)=(mx2+nx1m+n,my2+ny1m+n)
Substituting (x1,y1)=(−2,−2) and (x2,y2)=(2,−4) and m=3,n=4 in the section formula, we get
the point (3(2)+4(−2)3+4,3(−4)+4(−2)3+4)=(−27,−207)