If A and B are acute angles such that A+B and A−B satisfy the equation tan2θ−4tanθ+1=0, then
As tan(A+B),tan(A−B) roots of tan2θ−4tanθ+1=0
Gives
tan(A+B)+tan(A−B)=4 ...(1)
tan(A+B).tan(A−B)=1 ...(2)
tan((A+B)+(A−B))=tan(A+B)+tan(A−B)1−tan(A+B).tan(A−B)tan2A=41−1⇒2A=π2⇒A=π4
Now from (1)
tan(A+B)+tan(A−B)=4⇒tanA+tanB1−tanAtanB+tanA−tanB1+tanAtanB=4⇒1+tanB1−tanB+1−tanB1+tanB=4⇒(1+tanB)2+(1−tanB)21−tan2B=4⇒1+tan2B+2tanB+1+tan2B−2tanB1−tan2B=4⇒1+tan2B1−tan2B=4⇒1cos2B=2⇒cos2B=12⇒2B=π3⇒B=π6