If A and B are acute positive angles satisfying the equations 3sin2A+2sin2B=1 and 3sin2A−2sin2B=0, then A+2B is equal to
3sin2A+2sin2B=1⇒3sin2A=1−2sin2B=cos2B ...(1)
3sin2A−2sin2B=0⇒sin2B=32sin2A ...(2)
From (1) and (2), we get
cos(A+2B)=cosAcos2B−sinAsin2B=cosA(3sin2A)−sinA(32sin2A)=3sin2AcosA−3sin2AcosA=0⇒A+2B=π2