IF A and B are any two events such that P(A) + P(B) - P (A and B ) = P(A), then
(a) P(BA)=1
(b) P(AB)=1
(c) P(BA)=0
(d) P(AB)=0
Given, P(A)+ p(B) - P(A and B) = P(A)
⇒P(A)+P(B)−P(A∩B)=P(A)⇒P(B)−P(A∩B)=0⇒P(B)=P(A∩B)⇒1=P(A∩B)P(B)⇒1=P(AB)[∵P(AB=P(A∩B)P(B))]