If A and B are complementary angles, cotA⋅tanB is equal to?
Given: A+B=90∘
Case I: A=90∘−B
⇒cotA=cot(90∘−B)=tanB
Hence, cotA⋅tanB=tanB×tanB=tan2B
Case II: B=90∘−A
⇒tanB=tan(90∘−A)=cotA
Hence, cotA⋅tanB=cotA×cotA=cot2A
Case III: A=90∘−B and B=90∘−A
Therefore, cotB=tanA and tanA=cotB
Hence, cotA⋅tanB=tanB⋅cotA