If a and b are different primes such that (i)[a−1b2a2b−4]7÷[a3b−5a−2b3]=axby,find x and y.
(ii)(a+b)−1(a−1+b−1)=axby,find x+y+2.
(i)[a−1b2a2b−4]7÷[a3b−5a−2b3]=axby⇒a−7b14a14b−28÷a3b−5a−2b3=axby⇒a−7b14a14b−28×a−2b3a3b−5=axby⇒a−7−14−2−3.b14+28+3+5=axby⇒a−26×b50=axbyComparing,we get, x=−26,y=50
(ii)(a+b)−1(a−1+b−1)=axby⇒(a+b)−1(1a+1b)=axby⇒1a+b×b+aab=axby⇒1ab=axby⇒a−1b−1=ax.byComparing,x=−1,y=−1Now put the value of x and y in x+y+2,x+y+2=−1−1+2=0