If A and B are events such that P(¯¯¯¯A∪¯¯¯¯B)=34,P(¯¯¯¯A∩¯¯¯¯B)=14 and P(A)=13, then P(¯¯¯¯A∩B) is
P(¯¯¯¯A∪¯¯¯¯B)=34⇒P(¯¯¯¯¯¯¯¯¯¯¯¯¯¯A∩B)=34⇒P(A∩B)=14
P(¯¯¯¯A∩¯¯¯¯B)=14⇒P(¯¯¯¯¯¯¯¯¯¯¯¯¯¯A∪B)=14⇒P(A∪B)=34
P(A)=13,P(¯¯¯¯A)=23
P(¯¯¯¯A∩B)=P(B)−P(A∩B)
P(A∪B)=P(A)+P(B)−P(A∩B)
⇒34=13+P(B)−14
P(B)=34−112=9−112=812=23
∴P(¯¯¯¯A∩B)=23−14=8−312=512