If a and b are negative real numbers such that the points z1=a−i,z2=−1+ib and z3=0 form an equilateral triangle; then the pair (a, b) is equal to ................ & ..............
A
(2 + √3, 2 + √3), (2 -√3, 2- √3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(-2 + 2√3, -2 + 2√3), (-2 -2√3, -2- 2√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2 +2 √3, 2 +2 √3), (2 -2√3, 2- 2√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(-2 + √3, -2 + √3), (-2 -√3, -2- √3)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C (-2 + √3, -2 + √3), (-2 -√3, -2- √3) Hence |z3−z1|=|z3−z2| a2+1=b2+1 Or a=±b and z21+z22+z23=z1.z2+z3z2+z3z1 a2−1−2ai+1−b2−2bi=(a−b)+i(1+ab) (a2−b2)−i(2(a+b))=−(a−b)+i(1+ab) Hence −2(a+b)=1+ab Considering b=a, we get b2+1+4b=0 b=−4±√16−42 =−2±√3