The correct option is D π2
Given, 3cos2A+2cos2B=4
⇒2cos2B−1=4−3cos2A−1
⇒cos2B=3(1−cos2A)=3sin2A ..... (1)
and 2cosBsinB=3sinAcosA
sin2B=3sinAcosA .... (2)
Now, cos(A+2B)=cosAcos2B−sinAsin2B
=cosA(3sin2A)−sinA(3sinAcosA)=0 ....[using eqs. (1) and (2)]
⇒A+2B=π2