If a and b are positive integers such that N=(a+ib)3−107i is a positive integer then N6 is
Open in App
Solution
N=(a+ib)3−107i =a3−ib3+3a2ib−3ab2−107i =(−b3+3a2b−107)i+a3−3ab2 Since, N is a positive integer so, Im(z)=0 ⇒−b3+3a2b−107=0⇒b(3a2−b2)=107 ∴b=1and3a2−b2=107⇒a=6 N=a3−3ab2=198 ∴N6=33