If a and b are positive numbers and limx→0(1+a3)+8e1x1+(2+b+b2)e1x=2, then value of a2+b2=
Open in App
Solution
limx→0(1+a3)+8e1x1+(2+b+b2)e1x=2 limx→0e−1x(1+a3)+8e−1x+(2+b+b2)=2 ⇒b2+b−2=0 ⇒b=−2,1 ⇒b=1 (since, given b is positive) Also, since, limit of the function exists as its given as 2 So, LHL=2 ⇒limh→0(1+a3)+8e−1h1+(2+b+b2)e−1h=2 ⇒(1+a3)1=2 ⇒a=1 Hence, a2+b2=1+1=2