If 'a' and 'b' are rational numbers, then find the values of 'a' and 'b' given that 2+5√32−√3=a+b√3
2+5√32−√3=a+b√3
2+5√32−√3×2+√32+√3=a+b√3
2(2+√3)+5√3(2+√3)(2)2−(√3)2=a+b√3
4+2√3+10√3+154−3=a+b√3
19+12√3=a+b√3
Comparing we get, a=19, b=12
If 'a' and 'b' are rational numbers, find 'a' and 'b' given that 3√3−√2=a√3−b√2.