If a and b are real numbers between 0 and 1 such that the points z1=a+i,z2=1+bi and z3=0 form an equilateral triangle, then
Since the triangle with vertices z1=a+i,z2=1+bi and z3=0 is equilateral, we have
z21+z22+z23=z1z2+z2z3+z3z1
⇒ (a+i)2(1+ib)2+0=(a+i)(1+ib)+0+0
⇒ a2-b2+2i(a+b)=a-b+i(1+ab)
Equating real and imaginary parts,
a2-b2=a-b ......(i) And
2(a+b)=1+ab
From (i),(a-b)[(a+b)-1]=0
⇒ Either a=b, we get from (ii)
4a=1+a2 or a2-4a+1=0
∴ a= 4±√16−42=2±√3
Since 0<a<1 and 0<b<1, we have
a=b=2-√3
Taking a+b=1 or b=1-a, we get from (ii)
2=1+a(1-a) or a2-a+1=0, which gives imaginary values of a. Hence a=b=2-√3 is the required value of a and b.