If a and b are real numbers between 0 and 1 such that the points (a,1),(1,b) and (0,0) form an equilateral triangle, find a and b.
A
a=2−√3,b=2−√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a=2+√3,b=2−√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=2−√3,b=2+√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=2+√3,b=2+√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aa=2−√3,b=2−√3 △ABCisanequilateraltriangleAB=BC=AC(AB)2=(BC)2=(AC)2AB=√(1−a)2+(b−1)2BC=√1+b2AC=√a2+1Also,(1−a)2+(b−1)2=1+b2=1+a2=>a2=b2Also,(1−a)2+(b−1)2=1+a2−2a+1+b2−2b=>1+a2−2a+1+b2−2b=1+b2=>a2−2a−2b+2=1=>b2−2b−2b+1=0=>b2−4b+1=0=>b=4±√16−42=4±√122=>b=2±√3b=2−√3a=2−√3