If a and b are real numbers such that (2+α)4=a+bα, where α=(-1+i3)2 then a+b is equal to:
33
57
9
24
Explanation for the correct option:
Step 1. Find the value of a+b:
Given, (2+α)4=a+bα
Let α=ω ∵ω3=1
Step 2. Put the value of α in the given equation, we get
(2+ω)4=a+bω
⇒24+4⋅23ω+6·22ω2+4·2ω3+ω4=a+bω
⇒ 16+32ω+24ω2+8+ω=a+bω
⇒ 24+24ω2+33ω=a+bω
⇒ −24ω+33ω=a+bω
⇒ 9ω=a+bω
⇒ b=9 and a=0
∴a+b=9
Hence, Option ‘C’ is Correct.