Given : A and B are subsets of the universal set U
To prove : A⊂A∪B
We know, A∪B={x|x∈A or x∈B}
Thus, x∈A⇒x∈A∪B
Hence, A⊂A∪B
To prove : A⊂B⇔A∪B=B
If A⊂B is given
Let x∈A∪B
⇒x∈A or x∈B
⇒x∈B [∵A⊂B]
⇒A∪B⊂B ...(1)
But we know B⊂A∪B ...(2)
From (1) and (2), we get A∪B=B
Now if A∪B=B
Let y∈A
⇒y∈A∪B
⇒y∈B [∵A∪B=B]
⇒A⊂B
Hence, A⊂B⇔A∪B=B
To prove :
(A∩B)⊂A
Let A∩B={x|x∈A and x∈B}
⇒x∈A∩B
⇒x∈A
Hence, A∩B⊂A