If A and B are the points (2,1,−2),(3,−4,5), then the angle that OA makes with OB is:
0(0,0,0)
OA=−2ˆi−ˆj+2ˆk, (OA)=√4+1+4=3
OB=−3ˆi+4ˆj−5ˆk, (OB)=√9+16+25=√50
Now cosθ=∣∣ ∣∣→OA.→OB(→OA).(→OB)∣∣ ∣∣
=∣∣∣6−4−103×√50∣∣∣
=83×5√2
cosθ=815√2
cosθ=8×√215×2
cosθ=4√215
θ=cos−1(4√215)