If a and b are the roots of x2−3x+p=0 and c, d are the roots x2−12x+q=0, Where a, b, c, d form a G.P. Prove that (q + p) : (q - p) = 17 : 15.
Given,
a, b are roots of the equation x2−3x+p=0 ⇒a+b=3, ab = p
and c, d are the roots of the equation x2+12x+q=0
⇒ Let b=ar, c=ar2 and d=ar3, then a + b = 3 and c + d = 12
a(1 + r) = 3 and ar2(1+r)=12
⇒ar2(1+r)a(1+r)=123
⇒ r = 2
and a(r + 1) = 3
⇒ a = 1
⇒ p = ab = a × ar
⇒ p = 2
⇒ q = cd = ar2×ar3
⇒ q = 25
q=32
∴q+pq−p=32+232−2
=3430
∴ (q + p) : (q - p) = 17 : 15