If A and B are the sums of odd and even terms respectively in the expansion of (x+a)n, then (x+a)2n−(x−a)2n is equal to
4AB
If A and B denote respectively the sums of odd terms and even terms in the expansion (x+a)n
Then, (x+a)n=A+B....(1)
(x−a)n=A−B.....(2)
Squaring and subtracting equation (2)from (1) we get
(x+a)2n−(x−a2n)=(A+B)2−(A−B)2
⇒(x+a)2n−(x−a)2n=4AB