If A and B are two event such that P(A)=34 and P(B)=58, then
P(A∪B)≥max{P(A),P(B)}
Here P(A)=34,P(B)=58
⇒P(A∪B)≥34
So, option A is correct.
P(A∩B)≤min{P(A),P(B)}⇒P(A∩B)≤58 ......(i)
We know P(A∪B)=P(A)+P(B)−P(A∩B)
⇒P(A∩B)=P(A)+P(B)−P(A∪B)⇒P(A∩B)≥P(A)+P(B)−1⇒P(A∩B)≥34+58−1⇒P(A∩B)≥38 .......(ii)
From (i) and (ii), we have
38≤P(A∩B)≤58
So, option C is correct.
38≤P(A∩B)≤58⇒−58≤−P(A∩B)≤−38
⇒P(B)−58≤P(B)−P(A∩B)≤P(B)−38⇒58−58≤P(_A∩B)≤58−38⇒0≤P(_A∩B)≤14⇒P(_A∩B)≤14