If A andB are two events such that P(A)≠0,P(B)≠1then PA'B'=?
1-PAB
1-PA'B
[1-P(AUB)]P(B')
P(A')P(B')
Explanation for the correct option :
Step 1. Given data Finding the value of P(A'B'):
P(A)≠0 and
P(B)≠1
Step 2. Finding the value of P(A'B')
We know that, PA'B'= PA'∩B'P(B')
= PA∪B'P(B') [∵PA'∩B'=PA∪B']
= 1-P(A∪B)P(B') [∵PA'∩B'=1-PA∪B]
∴ P(A'B') = [1-P(A∪B)]P(B')
Hence, option "C" is correct.
If P(-1,1) is the midpoint of the line segment joining A(-3,b) and B(1, b+4) then b=?
(a) 1 (b) -1 (c) 2 (d) 0
Find the point of intersection of the following pairs of lines :
(i) 2 x - y + 3 = 0 and x + y - 5 = 0 (ii) bx + ay = ab and ax + by = ab. (iii) y=m1 x+am1 and y=m2 x+am2.
If A and B are two events such that P(AUB)=56, P(A∩B)=13, and P(B')=13, then P(A)=?