If A and B are two events such that P(AUB)=34, P(A∩B)=14, P(A’)=23, then P(A’∩B) is equal to
512
38
58
12
Explanation for the correct option :
Step 1. Find P(A)
Given data
P(AUB)=34
P(A∩B)=14
P(A’)=23
We know that,
P(A’)=1-P(A)
⇒ P(A) =1-23
∴ P(A) = 13
Step 2. Find P(B)
P(AUB) = P(A)+P(B)-P(A∩B)
⇒ 34 =13+P(B)-14
∴ P(B) = 23
Step 3. Find P(A'∩B)
P(A'∩B)= P(B)-P(A∩B)
= 23-14
∴ P(A'∩B)= 512
Hence, option "A" is correct.