If A and B are two events, the probability that exactly one of them occurs is given by
A
P(A)+P(B)−2P(A∩B)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
P(A∩B)+2P(¯A∩B)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
P(A∪B)−P(A∩B)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
P(¯A)+P(¯B)−2P(¯A∩¯B)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AP(A)+P(B)−2P(A∩B) BP(A∩B)+2P(¯A∩B) CP(A∪B)−P(A∩B) DP(¯A)+P(¯B)−2P(¯A∩¯B) Exactly one of the events of E A and B is represented by A∩¯¯¯¯B+¯¯¯¯A∩B hence P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)={P(A)−P(A∩B)}+{P(B)−P(A∩B)}=P(A)+P(B)−2P(A∩B)
which is option (A). ⇒P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)=[P(A)+P(B)−P(A∩B)]−P(A∩B)=P(A∪B)−P(A∩B)
which is option (C). P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)=1−P(¯¯¯¯A)+1−P(¯¯¯¯B)−2{1−P(¯¯¯¯A∪¯¯¯¯B)}=2P(¯¯¯¯A∪¯¯¯¯B)−P(¯¯¯¯A)−P(¯¯¯¯B)={2P(¯¯¯¯A)+2P(¯¯¯¯B)−2P(¯¯¯¯A∩¯¯¯¯B)}−P(¯¯¯¯A)−P(¯¯¯¯B)=P(¯¯¯¯A)+P(¯¯¯¯B)−2P(¯¯¯¯A∩¯¯¯¯B)
which is option (D). and P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)=1−P(¯¯¯¯A∪B)+P(¯¯¯¯A∩B)∵¯¯¯¯¯¯¯¯¯¯¯¯¯A∩¯¯¯¯B=¯¯¯¯A∪B
by demorgan's law P(A∩¯¯¯¯B)=1−P(¯¯¯¯A∪B)⇒P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)={1−P(¯¯¯¯A)−P(B)+P(¯¯¯¯A∩B)}+P(¯¯¯¯A∩B)=P(A)−P(B)+2P(¯¯¯¯A∩B)