The correct options are
A 15
D 56
P(A′∩B)=215,P(A∩B′)=16
As A and B are independent events,
P(A∩B)=P(A)×P(B)
and P(A′∩B)=P(A′)×P(B)
=(1−P(A))×P(B)=215 ⋯(1)
P(A∩B′)=P(A)×(1−P(B))=16 ⋯(2)
Let P(A)=p
From (1),
P(B)=215×11−p
Substituting it in (2)
p(1−215×11−p)=16
⇒30p2−31p+5=0⇒(5p−1)(6p−5)=0
⇒p=15 or 56