If a and b are two integers such that 10a+b=20 and g(x)=x2+ax+b. Then, integer n such that g(10).g(11)=g(n) is
15
65
130
165
Explanation for the correct option:
Step 1. Find the value of integer n:
Given that, g(x)=x2+ax+b
and g(10)g(11)=g(n)
(100+10a+b)(121+11a+b)=n2+an+b
(100+20)(121+10a+b+a)=n2+an+20–10a
(120)(141+a)=(n2+20)+a(n–10)
120×141+120a=(n2+20)+(n–10)a
Step 2. compare the variable part of the equation:
n–10=120
∴n=130
Hence, Option ‘C’ is Correct.