If A and B are two matrices such that A has identical rows and AB is defined, then AB has
identical rows
A=⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣abc⋯iabc⋯i⋅⋅⋅⋅⋅⋅⋅⋅⋅⋮abc⋯i⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦m×n,B=⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣kl⋯xwv⋯y⋅⋅⋅⋅⋅⋅⋅⋅qr⋯s⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦n×p
AB=⎡⎢
⎢
⎢
⎢
⎢
⎢⎣ak+bw+⋯+iqal+bv+⋯+ir⋯⋯ax+by+⋯+isak+bw+⋯+iqal+bv+..+ir⋯⋯ax+by+⋯+is⋅⋅⋅⋅⋅⋅ak+bw+⋯+iqal+bv+⋯+ir⋯⋯..ax+by+⋯+is⎤⎥
⎥
⎥
⎥
⎥
⎥⎦m×p
Hence, the rows are identical