If A and B are two matrices such that AB=B and BA=A, then A2+B2=
2 AB
2 BA
A+B
AB
AB=B⇒(AB)A=BA⇒A(BA)=BA⇒A(A)=A [∵BA=A]⇒A2=AAB=B⇒B(AB)=BB⇒(BA)B=B2⇒AB=B2⇒B=B2 i.e. B2=B∴ A2+B2=A+B
Show that if A and B are square matrices such that AB = BA, then (A+B)2=A2+2AB+B2.