If a and b are unit vectors, then the vector (a+b)×(a×b) is parallel to the vector?
a–b
a+b
2a–b
2a+b
Explanation for the correct option:
Given, (a+b)×(a×b)
=a×(a×b)+b×(a×b)
=(a·b)a−(a·a)b+(b·b)a−(b·a)b=(a·b)(a−b)+a−b=(a·b+1)(a−b) ∵a·a=1,b·b=1
⇒ (a+b)×(a×b)=k(a−b) where k=a·b+1 is a scalar
∴(a+b)×(a×b)∥(a-b)
Hence, Option ‘A’ is Correct.