If AandB be acute positive angles satisfying 3sin2A+2sin2B=1and3sin2A−2sin2B=0, then
A
B=π4−A2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A=π4−2B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
B=π2−A4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A=π4−B2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AB=π4−A2 From the given relations, we have sin2B=32sin2A and 3sin2A=1−2sin2B=cos2B So that cos(A+2B)=cosAcos2B−sinAsin2B =cosA.3sin2A−32sinAsin2A =3cosAsin2A−3sin2AcosA=0 ⇒A+2B=π2