If A and B be the points (3, 4, 5) and (−1, 3, −7) respectively, find the equation of the set of points P such that PA2+PB2=k2 where k is a constant.
Let P(x,y,z) be any point
Then
PA=√(x−3)2+(y−4)2+(z−5)2
= √x2+9−6x+y2+16−8y+z2+25−10z
PB=√(x+1)2+(y−3)2+(z+7)2
= √x2+1+2x+y2+9−6y+z2+49−14z
Now PA2+PB2=k2
∴ [√x2+9−6x+y2+16−8y+z2+25−10z]2+[√x2+1+2x+y2+9−6y+z2+49−14z]2=k2
∴ x2+9−6x+y2+16−8y+z2+25−10z+x2+1+2x+y2+9−6y+z2+49+14z=k2
⇒ 2x2+2y2+2z2−4x−14y+4z+109=k2
⇒ 2 (x2+y2+z2−2x−7y+2z)
= k2−109
⇒ x2+y2+z2−2x−7y+2z=k2−1092.