If a and b denote the sum of the coefficients of xn in the expansions of (1−3x+10x2)n and (1+x2)n respectively, then write the relation between a and b.
(1−3x+10x2)n
=nC0(1)n+nC1(1)n−1
(−3x+10x2)+...+nCn(−3x+10x2)2
Let x =1 on both sides.
(1−3+10)n
=nC0(1)n+nC1(1)n−1(−3+10)n
∴8n=a
(1+x2)n=nC−0(1)n+nC1(1)n−1(x2)+....+nCn(x2)n
Let x =1 on both sides.
(1+1)n
=nC0(1)n+nC1(1)n−1(1)+....+nCn(1)n
∴2n=b
∴a=b3