If a and b unit vectors inclined at an angle θ, then prove that :
tanθ2=|^a−^b||^a+^b|
Open in App
Solution
Using the formula: |→A±→B|=√|→A|2+|→B|2±2|→A||→B|cosθ |^a+^b|=√1+1+2cosθ=√2(1+cosθ)=√4cos2θ2 |^a−^b|=√1+1−2cosθ=√2(1−cosθ)=√4sin2θ2 |^a−^b||^a+^b|=√4sin2θ2√4cos2θ2=tanθ2