If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are A±√(A+G)(A−G).
Let 'a' and 'b' be two numbers
Then A=a+b2 and G=√ab
Now, A±√√(A+G)(A−G)=A ±√A2−G2
= a+b2±√(a+b2)2+(√ab2)
a+b2±√a2+b2+2ab4−ab
=a+b2±√a2+b2+2ab−4ab4
= a+b2±√(a−b)24=(a+b)2±(a−b)2
Now, A+√(A+G)(A−G)
= a+b2+a−b2=a+b+a−b2=2a2=b
and A−√(A+G)(A−G)
= a+b2−a−b2
= a+b−a+b2=2b2=b