Let the two numbers be a and b
∴AM=A=a+b2...(1) & GM=G=√ab...(2)
From (1) and (2) ,we obtain
a+b=2A...(3)
& ab=G2...(4)
Substituting the value of a and b
from(3) and (4) in the identity
(a−b)2=(a+b)2−4ab, we obtain
(a−b)2=4A2−4G2=4(A2−G2)(a−b)2=4A2−4(A+G)(A−G)(a−b)=2√(A+G)(A−G)
From (3) and (5) , we obtain 2a=2A+2√(A+G)(A−G)
⇒a=A+√(A+G)(A−G)
Substituting the value of a in (3), we obtain
b=2A−A−√(A+G)(A−G)=A−√(A+G)(A−G)
Thus , the two numbers are A±√(A+G)(A−G)