Let, the nos. be x&y
A.M of x&y=x+y2=A (given) --------(1)
G.M. of x&y=√xy=G (given) ------(2)
Now, you how to write x & y in terms of A & G
From (1) x=2A -y
Substituting in (2) xy=g2⇒(2A−y)y=G2
⇒−y2+2Ay−G2=0
⇒y2−2Ay+G2=0
y=2A±√4A2−4G22=A+√A2−G2&A−√A2−G2
∴x=A−√A2−G2orA+√A2−G2
So, the nos. are
A±√(A+G)(A+G)
proved
y=2A±√4A2−4G22=A+√A2−G2&A+√A2−G2∴x=A−√A2−G2 or A+√A2−G2