The correct option is B (a+b)p<ap+bp
Let, f(x)=(1+x)p−1−xp, x>0
⇒f′(x)=p(1+x)p−1−pxp−1⋯(1)
Now,
1+x>x
⇒(1+x)1−p>x1−p
⇒1(1+x)p−1>1xp−1
⇒(1+x)p−1<xp−1
⇒(1+x)p−1−xp−1<0⋯(2)
From (1) and (2), we get
f′(x)<0
Therefore, f(x) is a decreasing function
Now, f(0)=0
∵x>0⇒f(x)<f(0)
⇒(1+x)p−1−xp<0
⇒(1+x)p<1+xp
Put x=ab,
Hence, (a+b)p<ap+bp