If a + b = 10 and ab = 16, find the value of a2−ab+b2 and a2+ab+b2.
a + b = 10, ab = 16
Squaring,
(a+b)2=(10)2⇒ a2+b2+2ab=100⇒ a2+b2+2×16=100⇒ a2+b2+32=100∴ a2+b2=100−32=68Now, a2−ab+b2=a2+b2−ab=68−16=52and a2+ab+b2=a2+b2+ab=68+16=84
If a2+b2+c2=16 and ab + bc + ca = 10, find the value of a + b + c.
If a - b = 6 and ab = 16; find a2+b2
If a = 2, b = − 2, find the value of:
(i) a2 + b2 (ii) a2 + ab + b2 (iii) a2 − b2