If a+b-12=0 and ab=27, then find the value of a3+b3.
Compute the required value
Given, a+b-12=0
⇒a+b=12
and ab=27
We know,
a+b3=a3+b3+3ab(a+b)⇒123=a3+b3+3×27×12∵a+b=12,ab=27⇒a3+b3=1728-972⇒a3+b3=756
Therefore, the value of a3+b3=756.
If a - b = -8 and ab = -12 then a3−b3=
If a - b = 6 and ab = 20, find the value of a3−b3.