If A+B=45° , then (cotA-1)(cotB-1) is equal to
3
12
-1
-2
2
Explanation for the correct option:
Step 1. Find the value of (cotA-1)(cotB-1):
Given, A+B=45°
By Taking “cot” on both sides, we get
cot(A+B)=cot45°
⇒ (cotAcotB–1)(cotA+cotB)=cot45° ∵cot(θ+ϕ)=cotθcotϕ-1cotθ+cotϕ
⇒ cotAcotB–1=cotA+cotB ∵cot45°=1
⇒cotA+cotB–cotAcotB=-1
Step 2. Subtract 1 from both sides:
⇒cotA+cotB–cotAcotB-1=-1-1
⇒ cotA(1–cotB)–1(1–cotB)=-2
⇒ (cotA–1)(1–cotB)=-2
∴(cotA–1)(cotB–1)=2
Hence, option ‘E’ is Correct.