If a−b=5, and ab=6, find the value of (a2+b2)(a3−b3)
7955
Given: a−b=5 ... (i)
ab=6 ... (ii)
Squaring equation (i), we get
(a−b)2=25
⇒a2+b2−2ab=25
⇒a2+b2−2×6=25
⇒a2+b2=25+12=37 ... (iii)
Cubing equation (i), we get
(a−b)3=125
⇒a3−b3−3ab(a−b)=125
⇒a3−b3−3×6×5=125
⇒a3−b3=125+90=215 ... (iv)
Now,
(a2+b2)(a3−b3)=37×215=7955