If (a−b),a and (a+b) are zeros of the polynomial 2x3−6x2+5x−7, write the value of a.
f(x)=2x3−6x2+5x−7
Let α,β and γ be the zeroes.
Then, α=a−b,β=aandγ=a+b
We know that if α,βandγare the zeroes of a cubic polynomial,
ax3+bx2+cx+d=0
then, α+β+γ=−ba
(a−b)+a+(a+b)=−(−6)2
3a=3
a=1
So, the value of a=1