If a,b and c>0, then the minimum value of a(b+c)+b(c+a)+c(a+b) is
1
32
2
52
Explanation for the correct option:
Step 1. Find the minimum value of a(b+c)+b(c+a)+c(a+b):
As we know, AM≥GM
a(b+c)+b(c+a)+c(a+b)3≥∛abc(a+b)(b+c)(c+a) — (1)
Also, [a+b]2≥√ab,[b+c]2≥√bc and [c+a]2≥√ca
⇒(a+b)(b+c)(c+a)≥8abc
⇒abc(a+b)(b+c)(c+a)≤18
Step 2. Put this value in equation(1):
a(b+c)+b(c+a)+c(a+b)≥3183
∴a(b+c)+b(c+a)+c(a+b)≥32
Hence, Option ‘B’ is Correct.