If A, B and C are angles of a triangle, then the determinant
∣∣
∣∣−1cos Ccos Bcos C−1cos Acos Bcos A−1∣∣
∣∣ is equal to
(a) 0
(b) -1
(c) 1
(d) None of these
(a) We have, ∣∣
∣∣−1cos Ccos Bcos C−1cos Acos Bcos A−1∣∣
∣∣
Applying C1→aC1+bC2+cC3
∣∣
∣∣−a+b cos C+c cos Bcos Ccos Ba cos C−b+c cos A−1cos Aa cos B+b cos A−ccos A−1∣∣
∣∣
Also, by projection rule in a triangle, we know that
a=b cos C+c cos B,b=c cos A+a cos C and c=a cos B+b cos A
Using above equation in column first, we get
∣∣
∣∣−a+acos Ccos Bb−b−1cos Ac−ccos A−1∣∣
∣∣=∣∣
∣∣0cos Ccos B0−1cos A0cos A−1∣∣
∣∣=0
[since, determinant having all elements of any column or row gives value of determinant as zero]