1x∣∣
∣
∣∣x3−a2xx3−b2xx3−c2xx3−a33x2+3a2xx3−b3−3x2+3b2xx3−c3−3x2c+3c2xx3+a33x2a+3a2xx3+b3+3x2b+3xb2x3+c3+3x2c+3cx2∣∣
∣
∣∣R2→R2+R31x∣∣
∣
∣∣x3−a2x(x3−b2x)x3−c2x2x3+6a22x3+6b2x2x3+6c2x(x+a)3(x+b)3(x+c)3∣∣
∣
∣∣=0R1→2R1−R31x∣∣
∣
∣∣−8a2x−8b2x−8c2x2x3+6a2x2x3+6b2x2x3+6c2x(x+a)3(x+b)3(x+c)3∣∣
∣
∣∣=0R2→R2+68R11x∣∣
∣
∣∣−8a2x−8b2x−8c2x2x32x32x3(x+a)3(x+6)3(x+c)3∣∣
∣
∣∣=0R3→R3−(R2+R1)−16x∣∣
∣
∣∣a2xb2xc2xx3x3x3a3+3x2ab3+3x2bc3+3x2c∣∣
∣
∣∣=0−16x4x∣∣
∣
∣∣a2b2c2111a2+3x2ab3+3x2bc3+3x2c∣∣
∣
∣∣=0c1→c1−c2c2+c2−c3−16x3∣∣
∣
∣∣a2−b2(b2−c)2c2001(3x2+a2+b2+ab(3x2+b2+c2cb)c3+3x2c∣∣
∣
∣∣=0,(a−b),(b−c)−16(a−b)(b−c)x3∣∣
∣
∣∣(a+b)(b2+c2c2001(3x2+a2+b2+ab)3x2+b2+c2+cb)(+3x2c)∣∣
∣
∣∣=0R3→R3−R21−16(a−b)(b−c)x3∣∣
∣
∣∣(a+b)(b+c)c20013x2−ab(3x2−cb)(c2+3x2c)−c4∣∣
∣
∣∣=0+16(a−b)(b−c)x3[(a+b)(3x2−cb)−(3x2−ab)(b+c)]=016(a−b)(b−c)x3[3x2[(a+b−b−c)]]+[−abc−cb2+ab2+abc]16(a−6)(b−c)x3(3x2(a−c)+(a−c)b2)16(a−b)(b−c)(a−c)x3(3x2+62)=0