If a, b and c are real numbers and Δ=∣∣ ∣∣b+cc+aa+bc+aa+bb+ca+bb+cc+a∣∣ ∣∣=0, Show that either a+b+c=0 or a=b=c.
Given, Δ=∣∣
∣∣b+cc+aa+bc+aa+bb+ca+bb+cc+a∣∣
∣∣=∣∣
∣
∣∣2(a+b+c)c+aa+b2(a+b+c)a+bb+c2(a+b+c)b+cc+a∣∣
∣
∣∣
(using C1→C1+C2+C3)
=2(a+b+c)∣∣
∣∣1c+aa+b1a+bb+c1b+ca+b∣∣
∣∣ (Taking out factor 2(a+b+c) from C1)
=2(a+b+c)∣∣
∣∣1c+aa+b0b−cc−a0b−ac−b∣∣
∣∣ (using R2→R2−R1,R3→R3−R1)
By expanding along C1, we get
=2(a)+b+c[(b−c)(c−b)−(b−a)(c−a)]=2(a+b+c)[bc−c2−b2+bc−bc+ac+ab−a2]=2(a+b+c)[ab+bc+ca−a2−b2−c2]
It is given that Δ=0
∴ (a+b+c)×2[ab+bc+ca−a2−b2−c2]=0
⇒ Either (a+b+c)=0 or 2(ab+bc+ca−a2−b2−c2)=0
If 2[ab+bc+ca−a2−b2−c2]=0
⇒−(2a2+2b2+2c2−2ab−2bc−2ca)=0
[Taking negative sign common]
⇒2a2+2b2+2c2−2ab−2bc−2ca=0⇒(a2+b2−2ab)+(b2+c2−2bc)+(c2+a2−2ca)=0⇒(a−b)2+(b−c)2+(c−a)2=0 [∵(x−y)2=x2+y2−2xy]
⇒(a−b)2=(b−c)2(c−a)2=0 [∵(a−b)2,(b−c)2,(c−a)2 are positive]
⇒a=b=c
Hence, if Δ=0, then either a+b+c=0 or a=b=c.