wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b and c are real numbers and Δ=∣ ∣b+cc+aa+bc+aa+bb+ca+bb+cc+a∣ ∣=0, Show that either a+b+c=0 or a=b=c.

Open in App
Solution

Given, Δ=∣ ∣b+cc+aa+bc+aa+bb+ca+bb+cc+a∣ ∣=∣ ∣ ∣2(a+b+c)c+aa+b2(a+b+c)a+bb+c2(a+b+c)b+cc+a∣ ∣ ∣
(using C1C1+C2+C3)
=2(a+b+c)∣ ∣1c+aa+b1a+bb+c1b+ca+b∣ ∣ (Taking out factor 2(a+b+c) from C1)
=2(a+b+c)∣ ∣1c+aa+b0bcca0bacb∣ ∣ (using R2R2R1,R3R3R1)
By expanding along C1, we get
=2(a)+b+c[(bc)(cb)(ba)(ca)]=2(a+b+c)[bcc2b2+bcbc+ac+aba2]=2(a+b+c)[ab+bc+caa2b2c2]
It is given that Δ=0
(a+b+c)×2[ab+bc+caa2b2c2]=0
Either (a+b+c)=0 or 2(ab+bc+caa2b2c2)=0
If 2[ab+bc+caa2b2c2]=0
(2a2+2b2+2c22ab2bc2ca)=0
[Taking negative sign common]
2a2+2b2+2c22ab2bc2ca=0(a2+b22ab)+(b2+c22bc)+(c2+a22ca)=0(ab)2+(bc)2+(ca)2=0 [(xy)2=x2+y22xy]
(ab)2=(bc)2(ca)2=0 [(ab)2,(bc)2,(ca)2 are positive]
a=b=c
Hence, if Δ=0, then either a+b+c=0 or a=b=c.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon