Δ=∣∣
∣∣b+cc+aa+bc+aa+bb+ca+bb+cc+a∣∣
∣∣=0
C1→C1+C2+C3
∣∣
∣
∣∣2(a+b+c)c+aa+b2(a+b+c)a+bb+c2(a+b+c)b+cc+a∣∣
∣
∣∣=0
Taking 2(a+b+c) common from C1
2(a+b+c)∣∣
∣∣1c+aa+b1a+bb+c1b+cc+a∣∣
∣∣=0
R1→R1−R2,R2→R2−R3
2(a+b+c)∣∣
∣∣0c−ba−c0a−cb−a1b+cc+a∣∣
∣∣=0
On expanding along first column, we get
2(a+b+c)[(c−b)(b−a)−(a−c)2]=0
⇒2(a+b+c)(a2+b2+c2−ab−bc−ca)=0
⇒(a+b+c)(2a2+2b2+2c2−2ab−2bc−2ca)=0
⇒(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0
⇒(a+b+c)=0 or (a−b)2+(b−c)2+(c−a)2=0
(a−b)2+(b−c)2+(c−a)2=0 , which is possible only when a=b=c
Hence, Δ=0
⇒a+b+c=0 or a=b=c